Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Biomed Sci ; 31(1): 48, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730462

RESUMEN

Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.


Asunto(s)
Barrera Hematorretinal , Vesículas Extracelulares , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/fisiopatología , Vesículas Extracelulares/metabolismo , Humanos , Retinopatía Diabética/fisiopatología , Retinopatía Diabética/metabolismo , Enfermedades de la Retina/fisiopatología , Enfermedades de la Retina/metabolismo , Degeneración Macular/fisiopatología , Degeneración Macular/metabolismo , Animales
2.
Cell Biosci ; 14(1): 5, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183095

RESUMEN

BACKGROUND: Glaucoma, a progressive neurodegenerative disease, is a leading cause of irreversible vision loss worldwide. This study aims to elucidate the critical role of Müller glia (MG) in the context of retinal ganglion cell (RGC) death, particularly focusing on the influence of peripheral MG sensitivity to high pressure (HP). METHODS: Co-cultures of porcine RGCs with MG were isolated from both the central and peripheral regions of pig retinas and subjected to both normal and HP conditions. Mass spectrometry analysis of the MG-conditioned medium was conducted to identify the proteins released by MG under all conditions. RESULTS: Peripheral MG were found to secrete a higher quantity of neuroprotective factors, effectively promoting RGC survival under normal physiological conditions. However, under HP conditions, co-cultures with peripheral MG exhibited impaired RGC survival. Moreover, under HP conditions, peripheral MG significantly upregulated the secretion of proteins associated with apoptosis, oxidative stress, and inflammation. CONCLUSIONS: This study provides robust evidence suggesting the involvement of MG in RGC death in glaucoma, thus paving the way for future therapeutic investigations.

3.
Exp Eye Res ; 235: 109627, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37619829

RESUMEN

The main purpose of this study is to analyze the effects of unilateral optic nerve crush in the gene expression of pro- and anti-inflammatory mediators, and gliosis markers in injured and contralateral retinas. Retinas from intact, unilaterally optic nerve injured or sham-operated C57BL/6J mice were analyzed 1, 3, 9 and 30 days after the surgery (n = 5/group and time point) and the relative expression of TGF-ß1, IL-1ß, TNF-α, Iba1, AQP4, GFAP, MHCII, and TSPO was analyzed in injured and contralateral using qPCR. The results indicated that compared with intact retinas, sham-operated animals showed an early (day 1) upregulation of IL-1ß, TNF-α and TSPO and a late (day 30) upregulation of TNF-α. In sham-contralateral retinas, TNF-α and TSPO mRNA expression were upregulated and day 30 while GFAP, Iba1, AQP4 and MHCII downregulated at day 9. Compared with sham-operated animals, in retinas affected by optic nerve crush GFAP and TSPO upregulated at day 1 and TNF-α, Iba1, AQP4 and MHCII at day 3. In the crushed-contralateral retinas, TGF-ß1, TNF-α, Iba1 and MHCII were upregulated at day 1. TSPO was upregulated up to day 30 whereas TGF-ß1 and Iba1 downregulated after day 9. In conclusion, both sham surgery and optic nerve crush changed the profile of inflammatory and gliosis markers in the injured and contralateral retinas, changes that were more pronounced for optic nerve crush when compared to sham.


Asunto(s)
Traumatismos del Nervio Óptico , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/farmacología , Células Ganglionares de la Retina/metabolismo , Gliosis/metabolismo , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Retina/metabolismo , Nervio Óptico/metabolismo , Compresión Nerviosa/métodos
4.
Eur J Cell Biol ; 102(2): 151333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37327741

RESUMEN

Nuclear Dbf2-related (NDR) kinases are a subgroup of evolutionarily conserved AGC protein kinases that regulate various aspects of cell growth and morphogenesis. There are 4 NDR protein kinases in mammals, LATS1, LATS2 and STTK8/NDR1, STK38L/NDR2 protein kinases. LATS1 and 2 are core components of the well-studied Hippo pathway, which play a critical role in the regulation of cell proliferation, differentiation, and cell migration via YAP/TAZ transcription factor. The Hippo pathways play an important role in nervous tissue development and homeostasis, especially with regard to the central nervous system (CNS) and the ocular system. The ocular system is a very complex system generated by the interaction in a very tightly coordinated manner of numerous and diverse developing tissues, such as, but not limited to choroidal and retinal blood vessels, the retinal pigmented epithelium and the retina, a highly polarized neuronal tissue. The retina development and maintenance require precise and coordinated regulation of cell proliferation, cell death, migration, morphogenesis, synaptic connectivity, and balanced homeostasis. This review highlights the emerging roles of NDR1 and NDR2 kinases in the regulation of retinal/neuronal function and homeostasis via a noncanonical branch of the Hippo pathway. We highlight a potential role of NDR1 and NDR2 kinases in regulating neuronal inflammation and as potential therapeutic targets for the treatment of neuronal diseases.


Asunto(s)
Neurobiología , Proteínas Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proliferación Celular , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Mamíferos/metabolismo
5.
Front Aging Neurosci ; 15: 1161847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091517

RESUMEN

Animal models of disease are paramount to understand retinal development, the pathophysiology of eye diseases, and to study neurodegeneration using optical coherence tomography (OCT) data. In this study, we present a comprehensive normative database of retinal thickness in C57BL6/129S mice using spectral-domain OCT data. The database covers a longitudinal period of 16 months, from 1 to 16 months of age, and provides valuable insights into retinal development and changes over time. Our findings reveal that total retinal thickness decreases with age, while the thickness of individual retinal layers and layer aggregates changes in different ways. For example, the outer plexiform layer (OPL), photoreceptor inner segments (ILS), and retinal pigment epithelium (RPE) thickened over time, whereas other retinal layers and layer aggregates became thinner. Additionally, we compare the retinal thickness of wild-type (WT) mice with an animal model of Alzheimer's disease (3 × Tg-AD) and show that the transgenic mice exhibit a decrease in total retinal thickness compared to age-matched WT mice, with statistically significant differences observed at all evaluated ages. This normative database of retinal thickness in mice will serve as a reference for future studies on retinal changes in neurodegenerative and eye diseases and will further our understanding of the pathophysiology of these conditions.

6.
Antioxidants (Basel) ; 12(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37107312

RESUMEN

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent neurodevelopmental disorders. Interestingly, children with ADHD seem to experience more ophthalmologic abnormalities, and the impact of methylphenidate (MPH) use on retinal physiology remains unclear. Thus, we aimed to unravel the retina's structural, functional, and cellular alterations and the impact of MPH in ADHD versus the control conditions. For that, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were used as animal models of ADHD and the controls, respectively. Animals were divided into four experimental groups as follows: WKY vehicle (Veh; tap water), WKY MPH (1.5 mg/kg/day), SHR Veh, SHR MPH. Individual administration was performed by gavage between P28-P55. Retinal physiology and structure were evaluated at P56 followed by tissue collection and analysis. The ADHD animal model presents the retinal structural, functional, and neuronal deficits, as well as the microglial reactivity, astrogliosis, blood-retinal barrier (BRB) hyperpermeability and a pro-inflammatory status. In this model, MPH had a beneficial effect on reducing microgliosis, BRB dysfunction, and inflammatory response, but did not correct the neuronal and functional alterations in the retina. Curiously, in the control animals, MPH showed an opposite effect since it impaired the retinal function, neuronal cells, and BRB integrity, and also promoted both microglia reactivity and upregulation of pro-inflammatory mediators. This study unveils the retinal alterations in ADHD and the opposite effects induced by MPH in the retina of ADHD and the control animal models.

7.
Ophthalmic Genet ; 44(4): 334-340, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36946380

RESUMEN

PURPOSE: To evaluate self-reported visual function and the psychosocial impact of visual loss EYS-associated retinal degeneration (EYS-RD) using two patient-reported outcome (PRO) measures: Michigan Retinal Degeneration Questionnaire (MRDQ) and Michigan Vision-related Anxiety Questionnaire (MVAQ). METHODS: Cross-sectional, single-center study conducted at a tertiary care hospital in Portugal. Patients with biallelic EYS variants were invited to participate. Clinical data including demographics, ETDRS best-corrected visual acuity (BCVA) in the better-seeing eye and genetic testing results were collected. Interviews were carried out during clinic visits or by phone between November 2021 and February 2022. A blind grader used horizontal and vertical spectral domain optical coherence tomography (SD-OCT) scans to manually measure ellipsoid zone (EZ) width in the nasal, temporal, superior and inferior macular quadrants to calculate the EZ area. RESULTS: Forty-nine patients (53.1% males; mean age 53 ± 14 years) were included. A positive correlation (p < .05) was found between age and most MRDQ domain scores (central vision, color vision, contrast sensitivity, scotopic function, photopic peripheral vision and mesopic peripheral vision). A negative correlation was found between both BCVA and EZ area across all MRDQ domains. In MVAQ, SD-OCT EZ area negatively correlated with both rod function and cone function-related anxiety. Neither age, BCVA or gender correlated with MVAQ domains. CONCLUSIONS: This study provides strong evidence supporting a correlation between PRO measures and both functional and structural clinician-reported outcomes. The use of MRDQ and MVAQ adds a new dimension to our understanding of EYS-RD and establishes both PRO measures as important disease outcome measures.


Asunto(s)
Degeneración Retiniana , Masculino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Femenino , Degeneración Retiniana/genética , Portugal , Autoinforme , Estudios Transversales , Agudeza Visual , Trastornos de la Visión , Tomografía de Coherencia Óptica/métodos , Proteínas del Ojo/genética
8.
Ophthalmol Retina ; 7(7): 628-638, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36764454

RESUMEN

PURPOSE: To describe the natural history, genetic landscape, and phenotypic spectrum of Eyes shut homolog (EYS)-associated retinal degeneration (EYS-RD). DESIGN: Retrospective, single-center cohort study complemented by a cross-sectional examination. SUBJECTS: Patients with biallelic EYS variants were recruited at an inherited RD referral center in Portugal. METHODS: Every patient underwent a cross-sectional examination comprising a comprehensive ophthalmic examination including best-corrected visual acuity (BCVA), dilated slit-lamp anterior segment, and fundus biomicroscopy; ultrawide-field color fundus photography and fundus autofluorescence imaging; and spectral domain-OCT. In the setting of a retinitis pigmentosa (RP) diagnosis, every patient was classified as typical or atypical RP according to imaging criteria. Baseline demographics, age at onset of symptoms, family history, history of consanguinity, symptoms, age at diagnosis, BCVA at baseline and throughout follow-up, and EYS variants were collected from each individual patient file. MAIN OUTCOME MEASURES: Clinical/demographic, genetic, multimodal imaging data, and BCVA variation were compared between typical and atypical RP. Additionally, BCVA variation during follow-up was used as an endpoint to describe EYS-RD natural history. RESULTS: Fifty-eight patients (59% men; mean age 52 ± 14 years) from 48 White families of Portuguese ancestry were included. Twenty distinct EYS variants were identified, 8 of which are novel. In 32.8% of patients, onset of symptoms was in early adulthood (21-30 years). A clinical diagnosis of RP was established in 57 patients and cone-rod dystrophy in 1 patient. Regarding RP, 75.0% of the patients were graded as typical and 25.0% as atypical. Atypical EYS-RP commonly presents with inferior crescent-shaped macular atrophy with superior midperipheral sparing. In EYS-RD, a negative correlation was found between age and BCVA (r = -0.50; P < 0.001), with an average loss of 1.45 letters per year. When stratifying for RP phenotype, lower average loss of letters per year (P < 0.001), higher BCVA (P < 0.001), and larger ellipsoid zone widths (P < 0.001) were found in atypical RP. CONCLUSIONS: This study expands the genetic spectrum of EYS-RD by reporting 8 novel variants. A high frequency of atypical phenotypes was identified. These patients have better BCVA and larger ellipsoidal zone widths, thus presenting an overall better prognosis. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética , Estudios de Cohortes , Estudios Retrospectivos , Estudios Transversales , Mutación , Proteínas del Ojo/genética , Tomografía de Coherencia Óptica , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Fenotipo
9.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834893

RESUMEN

Retinal organotypic cultures (ROCs) are used as an in vivo surrogate to study retinal ganglion cell (RGC) loss and neuroprotection. In vivo, the gold standard to study RGC degeneration and neuroprotection is optic nerve lesion. We propose here to compare the course of RGC death and glial activation between both models. The left optic nerve of C57BL/6 male mice was crushed, and retinas analyzed from 1 to 9 days after the injury. ROCs were analyzed at the same time points. As a control, intact retinas were used. Retinas were studied anatomically to assess RGC survival, microglial, and macroglial activation. Macroglial and microglial cells showed different morphological activation between models and were activated earlier in ROCs. Furthermore, microglial cell density in the ganglion cell layer was always lower in ROCs than in vivo. RGC loss after axotomy and in vitro followed the same trend up to 5 days. Thereafter, there was an abrupt decrease in viable RGCs in ROCs. However, RGC somas were still immuno-identified by several molecular markers. ROCs are useful for proof-of-concept studies on neuroprotection, but long-term experiments should be carried out in vivo. Importantly, the differential glial activation observed between models and the concomitant death of photoreceptors that occurs in vitro may alter the efficacy of RGC neuroprotective therapies when tested in in vivo models of optic nerve injury.


Asunto(s)
Sistemas Microfisiológicos , Traumatismos del Nervio Óptico , Ratones , Animales , Masculino , Ratones Endogámicos C57BL , Retina/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Axotomía , Supervivencia Celular
10.
Antioxidants (Basel) ; 12(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36829938

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of severe vision loss and blindness in elderly people worldwide. The damage to the retinal pigment epithelium (RPE) triggered by oxidative stress plays a central role in the onset and progression of AMD and results from the excessive accumulation of reactive oxygen species (ROS) produced mainly by mitochondria. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial molecular chaperone that contributes to the maintenance of mitochondrial integrity by decreasing the production and accumulation of ROS. The present study aimed to evaluate the presence and the role of TRAP1 in the RPE. Here, we report that TRAP1 is expressed in human adult retinal pigment epithelial cells and is located mainly in the mitochondria. Exposure of RPE cells to hydrogen peroxide decreases the levels of TRAP1. Furthermore, TRAP1 silencing increases intracellular ROS production and decreases mitochondrial respiratory capacity without affecting cell proliferation. Together, these findings offer novel insights into TRAP1 functions in RPE cells, opening possibilities to develop new treatment options for AMD.

11.
Antioxidants (Basel) ; 11(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36009273

RESUMEN

Neurodegenerative diseases are characterized by the progressive degeneration of the neuronal cells and their networks, hampering the function of the central or peripheral nervous system [...].

12.
Sci Rep ; 12(1): 13667, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953633

RESUMEN

The early diagnosis of neurodegenerative disorders is still an open issue despite the many efforts to address this problem. In particular, Alzheimer's disease (AD) remains undiagnosed for over a decade before the first symptoms. Optical coherence tomography (OCT) is now common and widely available and has been used to image the retina of AD patients and healthy controls to search for biomarkers of neurodegeneration. However, early diagnosis tools would need to rely on images of patients in early AD stages, which are not available due to late diagnosis. To shed light on how to overcome this obstacle, we resort to 57 wild-type mice and 57 triple-transgenic mouse model of AD to train a network with mice aged 3, 4, and 8 months and classify mice at the ages of 1, 2, and 12 months. To this end, we computed fundus images from OCT data and trained a convolution neural network (CNN) to classify those into the wild-type or transgenic group. CNN performance accuracy ranged from 80 to 88% for mice out of the training group's age, raising the possibility of diagnosing AD before the first symptoms through the non-invasive imaging of the retina.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Animales de Laboratorio , Biomarcadores , Ratones , Ratones Transgénicos , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos
13.
Front Aging Neurosci ; 14: 832195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783138

RESUMEN

The retina, as part of the central nervous system (CNS), can be the perfect target for in vivo, in situ, and noninvasive neuropathology diagnosis and assessment of therapeutic efficacy. It has long been established that several age-related brain changes are more pronounced in Alzheimer's disease (AD). Nevertheless, in the retina such link is still under-explored. This study investigates the differences in the aging of the CNS through the retina of 3× Tg-AD and wild-type mice. A dedicated optical coherence tomograph imaged mice's retinas for 16 months. Two neural networks were developed to model independently each group's ages and were then applied to an independent set containing images from both groups. Our analysis shows a mean absolute error of 0.875±1.1 × 10-2 and 1.112±1.4 × 10-2 months, depending on training group. Our deep learning approach appears to be a reliable retinal OCT aging marker. We show that retina aging is distinct in the two classes: the presence of the three mutated human genes in the mouse genome has an impact on the aging of the retina. For mice over 4 months-old, transgenic mice consistently present a negative retina age-gap when compared to wild-type mice, regardless of training set. This appears to contradict AD observations in the brain. However, the 'black-box" nature of deep-learning implies that one cannot infer reasoning. We can only speculate that some healthy age-dependent neural adaptations may be altered in transgenic animals.

14.
Cells ; 11(13)2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35805106

RESUMEN

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disorder (ND). While most research in NDs has been following a neuron-centric point of view, microglia are now recognized as crucial in the brain. Previous work revealed alterations that point to an increased activation state of microglia in the brain of CMVMJD135 mice, a MJD mouse model that replicates the motor symptoms and neuropathology of the human condition. Here, we investigated the extent to which microglia are actively contributing to MJD pathogenesis and symptom progression. For this, we used PLX3397 to reduce the number of microglia in the brain of CMVMJD135 mice. In addition, a set of statistical and machine learning models were further implemented to analyze the impact of PLX3397 on the morphology of the surviving microglia. Then, a battery of behavioral tests was used to evaluate the impact of microglial depletion on the motor phenotype of CMVMJD135 mice. Although PLX3397 treatment substantially reduced microglia density in the affected brain regions, it did not affect the motor deficits seen in CMVMJD135 mice. In addition to reducing the number of microglia, the treatment with PLX3397 induced morphological changes suggestive of activation in the surviving microglia, the microglia of wild-type animals becoming similar to those of CMVMJD135 animals. These results suggest that microglial cells are not key contributors for MJD progression. Furthermore, the impact of PLX3397 on microglial activation should be taken into account in the interpretation of findings of ND modification seen upon treatment with this CSF1R inhibitor.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ataxina-3/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Ratones , Microglía/patología
15.
Front Med (Lausanne) ; 9: 873483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692536

RESUMEN

Purpose: Tear fluid biomarkers may offer a non-invasive strategy for detecting diabetic patients with increased risk of developing diabetic retinopathy (DR) or increased disease progression, thus helping both improving diagnostic accuracy and understanding the pathophysiology of the disease. Here, we assessed the tear fluid of nondiabetic individuals, diabetic patients with no DR, and diabetic patients with nonproliferative DR (NPDR) or with proliferative DR (PDR) to find putative biomarkers for the diagnosis and staging of DR. Methods: Tear fluid samples were collected using Schirmer test strips from a cohort with 12 controls and 54 Type 2 Diabetes (T2D) patients, and then analyzed using mass spectrometry (MS)-based shotgun proteomics and bead-based multiplex assay. Tear fluid-derived small extracellular vesicles (EVs) were analyzed by transmission electron microscopy, Western Blotting, and nano tracking. Results: Proteomics analysis revealed that among the 682 reliably quantified proteins in tear fluid, 42 and 26 were differentially expressed in NPDR and PDR, respectively, comparing to the control group. Data are available via ProteomeXchange with identifier PXD033101. By multicomparison analyses, we also found significant changes in 32 proteins. Gene ontology (GO) annotations showed that most of these proteins are associated with oxidative stress and small EVs. Indeed, we also found that tear fluid is particularly enriched in small EVs. T2D patients with NPDR have higher IL-2/-5/-18, TNF, MMP-2/-3/-9 concentrations than the controls. In the PDR group, IL-5/-18 and MMP-3/-9 concentrations were significantly higher, whereas IL-13 was lower, compared to the controls. Conclusions: Overall, the results show alterations in tear fluid proteins profile in diabetic patients with retinopathy. Promising candidate biomarkers identified need to be validated in a large sample cohort.

16.
J Control Release ; 343: 469-481, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131370

RESUMEN

Retinal ganglion cell (RGC) loss underlies several conditions which give rise to significant visual compromise, including glaucoma and ischaemic optic neuropathies. Neuroprotection of RGCs is a clinical well-defined unmet need in these diseases, and adenosine A3 receptor (A3R) activation emerges as a therapeutic pharmacological approach to protect RGCs. A porous biodegradable intraocular implant loaded with 2-Cl-IB-MECA (selective A3R agonist) was used as a strategy to protect RGCs. Drug-loaded PCL implants released 2-Cl-IB-MECA for an extended period and the released 2-Cl-IB-MECA limited glutamate-evoked calcium (Ca2+) rise in RGCs. Retinal thinning due to transient ischemia was not prevented by 2-Cl-IB-MECA-PCL implant. However, 2-Cl-IB-MECA-PCL implants decreased retinal cell death, promoted the survival of RGCs, preserved optic nerve structure and anterograde axonal transport. We further demonstrated that 2-Cl-IB-MECA-loaded PCL implants were able to enhance RGC function that was compromised by transient ischemia. Taking into consideration the beneficial effects afforded by 2-Cl-IB-MECA released from the PCL implant, this can be envisaged a good therapeutic strategy to protect RGCs.


Asunto(s)
Agonistas del Receptor de Adenosina A3 , Células Ganglionares de la Retina , Agonistas del Receptor de Adenosina A3/farmacología , Humanos , Isquemia/tratamiento farmacológico , Receptor de Adenosina A3/metabolismo , Retina/metabolismo
17.
Biomedicines ; 10(2)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35203447

RESUMEN

Microglia have been increasingly implicated in neurodegenerative diseases (NDs), and specific disease associated microglia (DAM) profiles have been defined for several of these NDs. Yet, the microglial profile in Machado-Joseph disease (MJD) remains unexplored. Here, we characterized the profile of microglia in the CMVMJD135 mouse model of MJD. This characterization was performed using primary microglial cultures and microglial cells obtained from disease-relevant brain regions of neonatal and adult CMVMJD135 mice, respectively. Machine learning models were implemented to identify potential clusters of microglia based on their morphological features, and an RNA-sequencing analysis was performed to identify molecular perturbations and potential therapeutic targets. Our findings reveal morphological alterations that point to an increased activation state of microglia in CMVMJD135 mice and a disease-specific transcriptional profile of MJD microglia, encompassing a total of 101 differentially expressed genes, with enrichment in molecular pathways related to oxidative stress, immune response, cell proliferation, cell death, and lipid metabolism. Overall, these results allowed us to define the cellular and molecular profile of MJD-associated microglia and to identify genes and pathways that might represent potential therapeutic targets for this disorder.

18.
Antioxidants (Basel) ; 10(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34829705

RESUMEN

Tumor necrosis factor receptor-associated protein 1 (TRAP1), also known as heat shock protein 75 (HSP75), is a member of the heat shock protein 90 (HSP90) chaperone family that resides mainly in the mitochondria. As a mitochondrial molecular chaperone, TRAP1 supports protein folding and contributes to the maintenance of mitochondrial integrity even under cellular stress. TRAP1 is a cellular regulator of mitochondrial bioenergetics, redox homeostasis, oxidative stress-induced cell death, apoptosis, and unfolded protein response (UPR) in the endoplasmic reticulum (ER). TRAP1 has attracted increasing interest as a therapeutical target, with a special focus on the design of TRAP1 specific inhibitors. Although TRAP1 was extensively studied in the oncology field, its role in central nervous system cells, under physiological and pathological conditions, remains largely unknown. In this review, we will start by summarizing the biology of TRAP1, including its structure and related pathways. Thereafter, we will continue by debating the role of TRAP1 in the maintenance of redox homeostasis and protection against oxidative stress and apoptosis. The role of TRAP1 in neurodegenerative disorders will also be discussed. Finally, we will review the potential of TRAP1 inhibitors as neuroprotective drugs.

19.
Biomolecules ; 11(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063832

RESUMEN

Microglial cells are the neuroimmune competent cells of the central nervous system. In the adult, microglia are responsible for screening the neuronal parenchyma searching for alterations in homeostasis. Chronic neuroinflammation plays a role in neurodegenerative disease. Indeed, microglia-mediated neuroinflammation is involved in the onset and progression of several disorders in the brain and retina. Microglial cell reactivity occurs in an orchestrated manner and propagates across the neural parenchyma spreading the neuroinflammatory signal from cell to cell. Extracellular vesicles are important vehicles of intercellular communication and act as message carriers across boundaries. Extracellular vesicles can be subdivided in several categories according to their cellular origin (apoptotic bodies, microvesicles and exosomes), each presenting, different but sometimes overlapping functions in cell communication. Mounting evidence suggests a role for extracellular vesicles in regulating microglial cell action. Herein, we explore the role of microglial extracellular vesicles as vehicles for cell communication and the mechanisms that trigger their release. In this review we covered the role of microglial extracellular vesicles, focusing on apoptotic bodies, microvesicles and exosomes, in the context of neurodegeneration and the impact of these vesicles derived from other cells in microglial cell reactivity.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Vesículas Extracelulares/patología , Humanos , Ratones , Microglía/patología , Enfermedades Neurodegenerativas/patología
20.
Aging (Albany NY) ; 13(7): 9433-9454, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33799308

RESUMEN

Mice are widely used as models for many diseases, including eye and neurodegenerative diseases. However, there is a lack of normative data for retinal thickness over time, especially at young ages. In this work, we present a normative thickness database from one to four-months-old, for nine layers/layer-aggregates, including the total retinal thickness, obtained from the segmentation of spectral-domain optical coherence tomography (SD-OCT) data from the C57BL6/129S mouse strain. Based on fifty-seven mice, this normative database provides an opportunity to study the ageing of control mice and characterise disease models' ageing, such as the triple transgenic mouse model of Alzheimer's disease (3×Tg-AD) used in this work. We report thickness measurements, the differences in thickness per layer, demonstrate a nasal-temporal asymmetry, and the variation of thickness as a function to the distance to the optic disc centre. Significant differences were found between the transgenic group's thickness and the normative database for the entire period covered in this study. Even though it is well accepted that retinal nerve fibre layer (RNFL) thinning is a hallmark of neurodegeneration, our results show a thicker RNFL-GCL (RNFL-Ganglion cell layer) aggregate for the 3×Tg-AD mice until four-months-old.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Disco Óptico , Retina/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...